Об очках:

Разнообразие сфер применения

News image

Большую глубину и лучшую фокусировку профессиональных линз смогут по достоинству оценить, в частности, люди следующих профессий: архитекторы, стомат...

Ношение очков

News image

Как много на свете вещей, которые мне не нужны , - любил повторять Сократ. Надеюсь, что вы можете сказать то же самое об очках. Но если же очки сос...

Требованиия к оправе

News image

Далеко не все прилегающие оправы подходят для сборки рецептурных линз. Наверное, ваши клиенты приносили вам дешевые прилегающие солнцезащитные очки,...

Острота зрения без очков – от чего она зависит?

News image

Острота зрения вообще зависит от двух составляющих: 1) качества оптической системы глаза и 2) величины колбочек в центре глазного дна. Начну со втор...



Глаз

О глазах и зрении - О глазах и зрении

глаз

Живое существо не имеет более верного и сильного защитника, чем глаз.

Видеть — значит различать врага и друга и окружающее во всех подробностях. Другие органы чувств выполняют то же, но несравненно грубее и слабее. Осязание и чувство теплоты дают нам вести о внешнем мире только при непосредственном соприкосновении; слух и обоняние, извещающие издалека, недостаточно информируют о расстоянии, направлении и формах.

Наши слова «очевидно», «поживем — увидим» равносильны тому, что видимость — достоверность. Современный физик убеждает других в реальности атомов тем, что мы, наконец, увидали пути отдельных атомов, а прежние противники существования атомов постоянно аргументировали тем, что атомов никто не видел. В этом смысле надо понимать изречение Анаксагора: «Зрение есть явление невидимого», невидимый мир становится реальностью, явлением посредством зрения.

Задачи идеального глаза как физического прибора ясны. От окружающих предметов исходит свет. Глазу дается направление лучей, энергия, спектральный состав и поляризация. От каждой точки предмета должно получиться свое, отдельное ощущение. Сочетание этих ощущений в мозговом центре должно воссоздать в идеале точное подобие излучающей поверхности со всеми ее оптическими особенностями. Важна пространственная правильность передачи, мозг должен получить верные сведения о форме, размерах и расстоянии. Далее мозг может корректировать полученные сведения в зависимости от потребности организма.

Как увидим, глаз довольно близко подходит к решению этой идеальной задачи.

Но как мог возникнуть вспомогательный живой орган, решающий оптические трудности иногда с большим совершенством, чем это доступно современному оптику, вооруженному огромными физическими знаниями и техникой?

На вопросы такого рода ответила биология дарвиновской теорией развития. Глаз есть результат чрезвычайно длительного процесса «естественного отбора», итог изменений организма под действием внешней среды и борьбы за существование, за лучшую приспособленность к внешнему миру.

Могучий фактор наследственности гарантирует сохранение биологических свойств, если они соответствуют внешним условиям и увеличивают стойкость организма в борьбе за жизнь. Многообразные воздействия окружающего мира создают различия в отдельных особях, которые в некоторых случаях дают им преимущества перед остальными. Так происходит «естественный отбор», так выживает и размножается дальше только наиболее приспособленное к внешнему миру, наиболее сильное.

В бесчисленном разнообразии живого перед нами — всевозможные решения оптической задачи; все они несовершенны, но во всех — немало целесообразного и, с точки зрения человека, «остроумного».

На фиг. 32 сопоставлены некоторые примеры различных способов решения задачи о глазе, о «приборе» для зрительного восприятия внешнего мира. На фиг. 32, а — пример «глаза» в одноклеточном организме. Перед чувствительным веществом помещается шаровидная линза l. Конечно, говорить об аппарате для получения изображения здесь еще нельзя. Ничтожные размеры линзы и ретины в этом случае предопределяют резкие дифракционные явления, а следовательно, чрезвычайное искажение изображения. На фиг. 32, б представлены зрительные органы дождевого червя. Здесь нет глаза; у червя светочувствительна вся его поверхность; зрительные клетки, соединенные с нервными волокнами, распределены равномерно по всему телу; об изображении не может быть речи. Фиг. 32, в — пример примитивного решения оптической задачи, когда свет воспринимается зрительным углублением, получается нечто вроде уха; при помощи такого устройства можно приблизительно определить направление светящегося тела, но не больше.

а — одноклеточный организм Роnchetia cornuta;
б — светочувствительные клетки, расположенные по всей коже дождевого червя;
в — зрительный орган в виде углубления у ракушки Patella;
г — глаз в виде камеры-обскуры у моллюсков;



Четыре последних примера на фиг. 32, д, е, ж, з относятся к последовательно совершенствующемуся разрешению оптической задачи с применением линзы. Сначала, у скорпиона, это еще очень грубый инструмент: вместо линзы шар, близко подходящий к чувствительному слою r. Это напоминает стеклянные шары, которыми, по преданию, в древности пользовались как зажигательным стеклом, или микроскоп Левенгука с «линзами» из капелек меда. На фиг. 32, е, ж, з перед нами постепенный переход к глазу, похожему на человеческий глаз, у улитки, головоногих, позвоночных. При этом у различных позвоночных задача решается вовсе неодинаково. На фиг. 33 мы видим примеры разрезов глаз нескольких позвоночных, ночных животных (опоссума, мыши, рыси) и дневных (пумы, собаки, верблюда, человека, голубя, хамелеона). Без пояснений видно, что задача оптически решается с большими вариациями

Очень интересны и поучительны с точки зрения приспособления живого организма к среде особенности глаз рыб, живущих на больших глубинах, куда почти не проникает солнечный свет. Казалось бы, что здесь рыбы должны быть просто безглазыми; надобности в глазах нет. В действительности это не так. Большинство глубоководных рыб имеет глаза, и притом (относительно) самые большие в мире позвоночных. Глаза их при этом (или в значительной мере поэтому), по-видимому, самые чувствительные в животном мире.

Как же согласовать этот факт с отсутствием света на глубине?

Ответ состоит прежде всего в том, что слабые следы солнечного света все же проникают и на значительные морские глубины. Преимущества же зрительного восприятия при отыскании пищи, размножении и борьбе за существование таковы, что много выгоднее повышать чувствительность глаза к свету, чем по «линии наименьшего сопротивления» — обрекать глаз на отмирание.
Но не только слабые следы света, проникающего в морские глубины, объясняют наличие глаз у существ, живущих там. Глубоководные морские рыбы сами способны производить свет, немного освещать окружающее и становиться видимыми для других зрячих животных. Поэтому у них развиваются люминесцирующие органы, помещающиеся около глаз или на других местах тела. На фиг. 34 изображены рыбы Photoblepharon palpebratus и Anomalops katoptron, у которых рядом с глазом расположена светящаяся ткань (выделенная на рисунке пунктиром). Свечение этой ткани происходит за счет окисления и служит маленьким маяком для рыб, освещая им путь и встречные тела. Такой маяк может быть, однако, и опасным для рыбы, обнаруживая ее врагу. Поэтому у обеих изображенных на рисунке рыб имеются приспособления вроде век для скрытия люминесцирующего маяка в случае надобности. У первой рыбы это производится выдвижением особого темного щитка, у второй сама светящаяся ткань может вдвигаться в особую защитную камеру . «Люминесцентные лампы» у глубоководных рыб совсем не редкость. Такими устройствами обладает более 90% всех рыб, живущих на больших глубинах.

В дальнейшем нам придется говорить преимущественно о глазе человека. Это вытекает из основной темы нашей статьи, посвященной связи глаза и Солнца; помимо того, только человеческий глаз изучен довольно глубоко, хотя многое и в нем еще неясно до сих пор.

Начнем с пространственной задачи.




Читайте:


Добавить комментарий


Защитный код
Обновить

Как улучшить зрение:

News image

Упражнения для профилактики и исправления дефектов зрения

Зрение, способность видеть человек получает с самого рождения и часто даже не задумывается, насколько это для него важно. Не задумывается до определенного момента. К сожалению, с...

News image

Способы аппаратной коррекции зрения: плюсы и минусы

Такие нарушения зрения, как близорукость и дальнозоркость, известны людям давно, и попытки исправить эти дефекты продолжаются уже несколько столетий. Исторически наиболее ранн...

News image

Программа по коррекции зрения описание

«Глаза, смотрящие вдаль, никогда не стареют»Глаза человека устроены так, чтобы больше смотреть вдаль. Но современная жизнь вынуждает нас постоянно использовать глаза для ближнег...

Всё про контактные линзы:

Однодневки – отличный вариант для спорта и отдыха

News image

Пользователю однодневных контактных линз не приходится затрачивать время, уделяя внимание уходу за линзами, и у него нет абсолют...

Контактные линзы для пользователей компьютеров

News image

Большинство тех, кто нуждается в коррекции зрения, являются пользователями компьютера, причем за его монитором они могут проводи...

о новинках

News image

Новые разработки в области однодневных линз максимально облегчают пациентам использование контактных линз. Раньше многим потреби...

Благодаря чему силикон-гидрогелевые линзы пропускают кислоро

News image

Когда пациент надевает гидрогелевые линзы, доступ кислорода к роговице обеспечивается только в том случае, если слезная жидкость...

Авторизация

Проблемы со зрением:

Сетчатка диагностика заболеваний и лечение

News image

Что такое сетчатка Сетчатка — внутренняя оболочка глаза, состоящая из миллионов светочувствительных клеток. Она преобразует световые потоки в нервн...

Астигматизм

News image

Астигматизм - это самая частая причина низкого зрения, часто сопровождающая близорукость или дальнозоркость. Его причиной является неправильная форм...

Симптомы болезни:

Гематома эндоваскулярная

News image

В некоторых случаях после проведения экстракапсулярной экстракции катаракты (особенно в комбинации с антиглаукоматозной операцией) с имплантацией за...

Хориоретинопатия

News image

Хориоретинопатия (выстрел дробью) начинается с постепенного понижения остроты зрения сначала одного, а через некоторое время - второго глаза. В позд...

Исследование зрения:

Прямая офтальмоскопия

News image

Позволяет непосредственно рассмотреть детали глазного дна, выявленные при офтальмоскопии в обратном виде.

Зеркальная офтальмоскопия

News image

Метод используют для осмотра оптически прозрачных сред глазного яблока (роговицы, влаги передней камеры, хрусталика, стекловидного тела).